

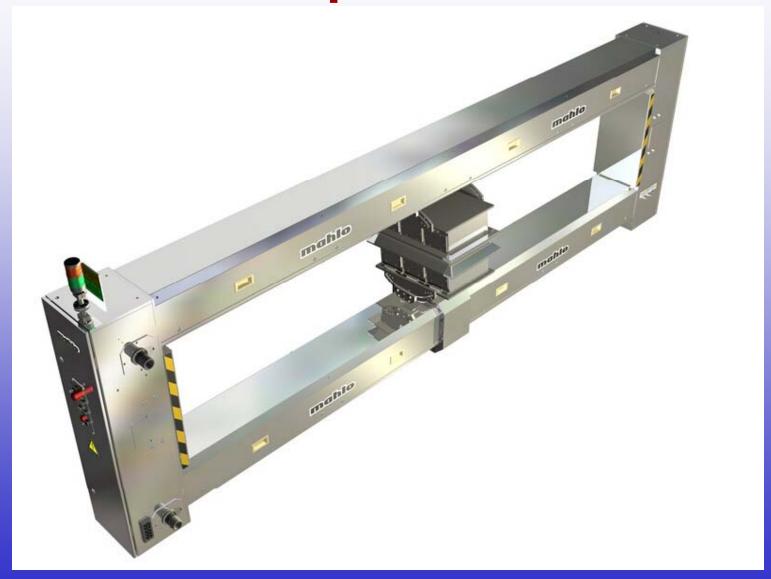
Process Measurement, Control and Service

For All Your Paper Production Needs

- Process Monitoring
- Machine Control
- Production Analysis
- Quality Management
- Cost-Effective Service

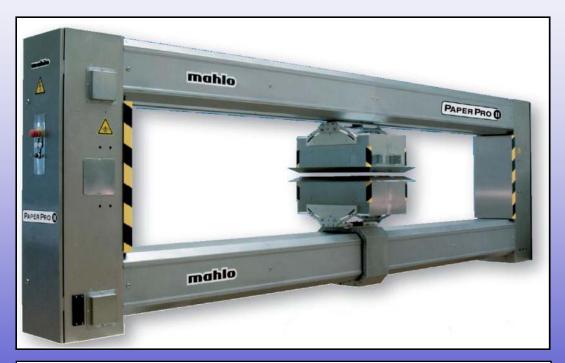
Welcome!

New On-Line Sensor Technologies for the Paper Industry:


- The DML Laser Caliper Sensor
- The DFI Beta Transmission Sensor

Presented by Eric Reber, Mahlo America Inc.
PaperCon 2011

The MAHLO PaperPro II



The MAHLO PaperPro II

A professional scanning platform for pulp & paper

- Stainless steel covers with quick service access capability
- Fully anodized or chemical Nickel coated German Steel
- Rigid, acid proof long life THK ® Linear Bearings
- Factory prepared for air purging and liquid cooling (closed loop)
- Dual Energy Chain System
- Weight 800 1850 kg
- Up to 7200 mm Web Width
- Space Efficient, Sealed Design
- Low Maintenance requirements

products

Mahlo PaperPro II Scanner Drive-Side End Bell

Reliable brushless 550W AC gearmotor

4" steel reinforced drive belts

Kevlar/Steel reinforced timing belt

Off-the-shelf gearmotor, drive, belts, relays, etc.

All components laid out for easy access, testing and maintenance

Mahlo On-line Measurement Sensors

•BASIS WEIGHT SENSORS

- **▶**Beta Transmission Sensors
- ➤ X-Ray Backscatter Sensor
- ►X-Ray Transmission Sensor
- ➤ Infrared Absorption

•MOISTURE SENSORS

- ► Infrared Absorption
- >Microwave Resonance
- ➤ Microwave Absorption

•CALIPER THICKNESS SENSORS

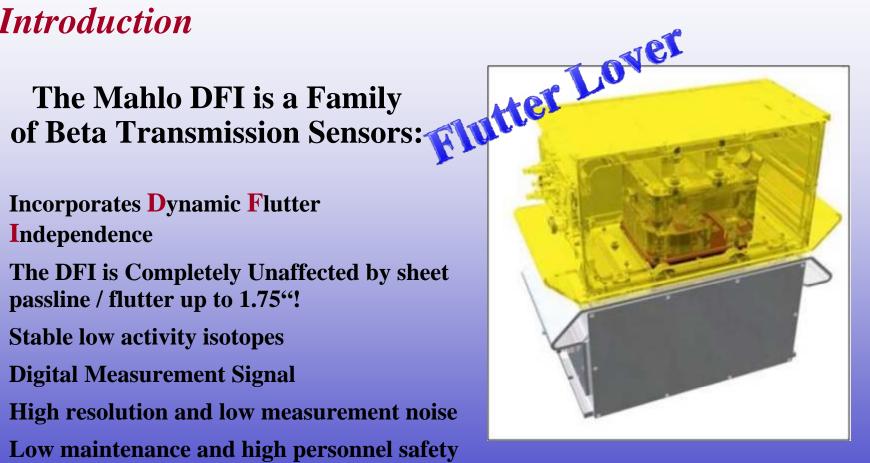
- ► Air Bearing
- ► Light Touch

•ASH SENSOR

► Fe⁵⁵ Transmission Sensor

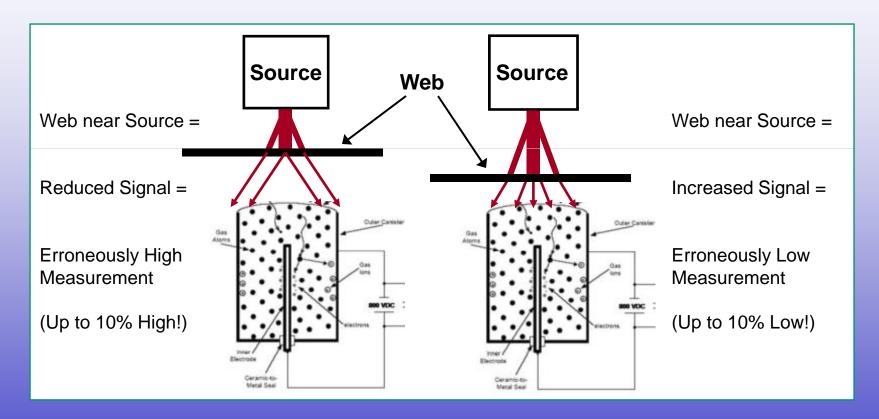
•GLOSS SENSOR

➤ GMR-12 Reflectance Sensor

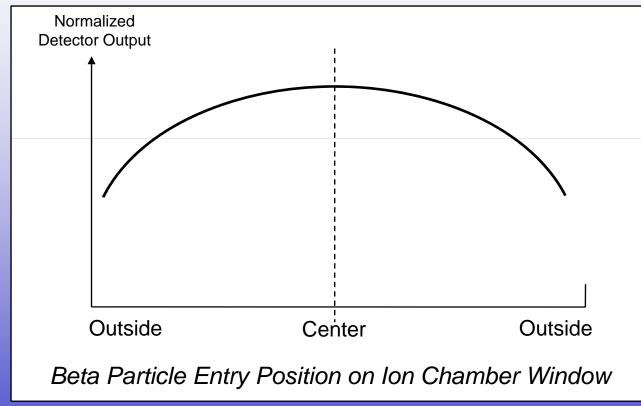


The NEW Mahlo D.F.I Beta Sensor

Introduction

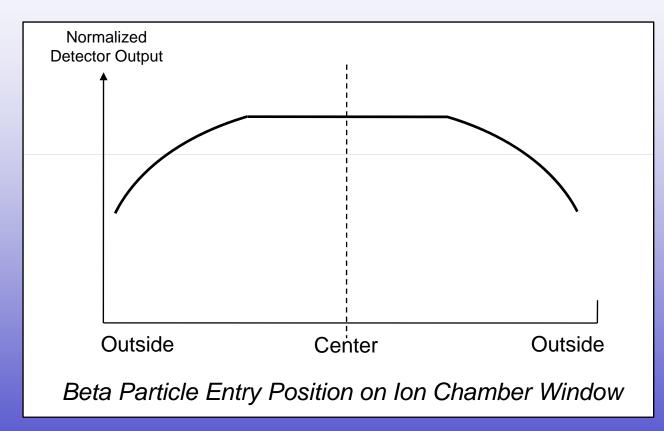

- **Incorporates Dynamic Flutter** Independence
- The DFI is Completely Unaffected by sheet passline / flutter up to 1.75"!
- **Stable low activity isotopes**
- **Digital Measurement Signal**
- High resolution and low measurement noise
- Low maintenance and high personnel safety

Introduction



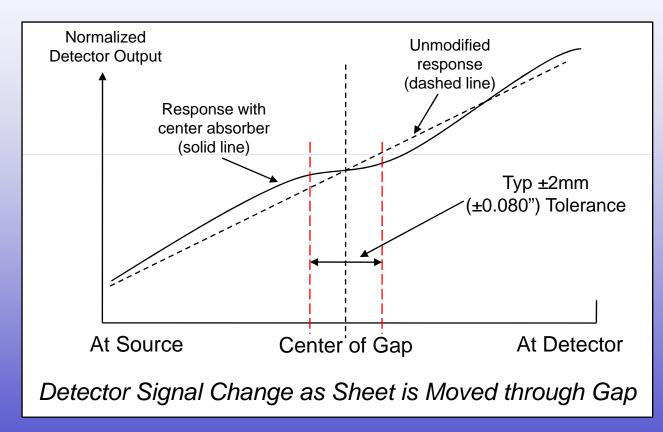
- Typical traversing beta transmission sensor
 - lonization chamber response to detector signal as web is moved through measurement gap from source to detector

Mahlo DFI



- Typical traversing beta transmission sensor
 - lonization chamber response to beta particle entry location across window
 - More sensitive in center than at edges

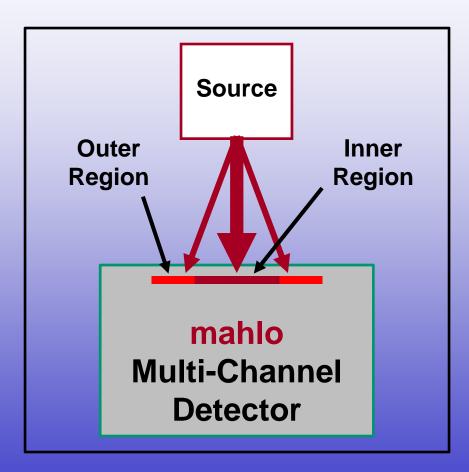
Mahlo DFI



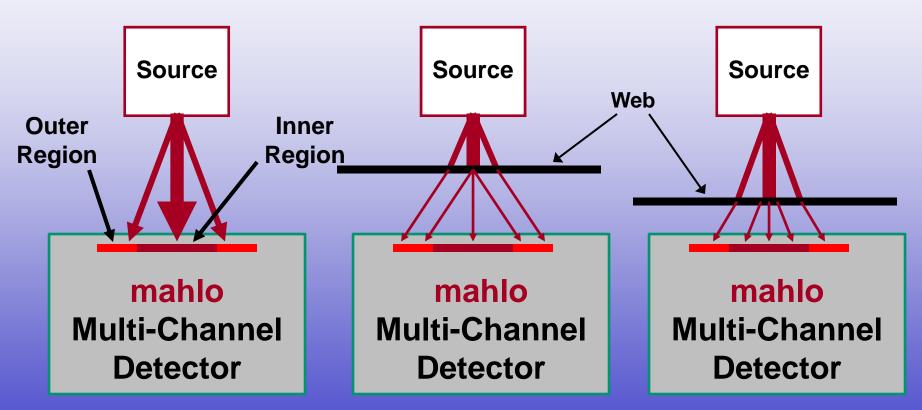
- Typical traversing beta transmission sensor
 - Heavy Absorber placed on detector window to dumb down higher response at center

Mahlo DFI

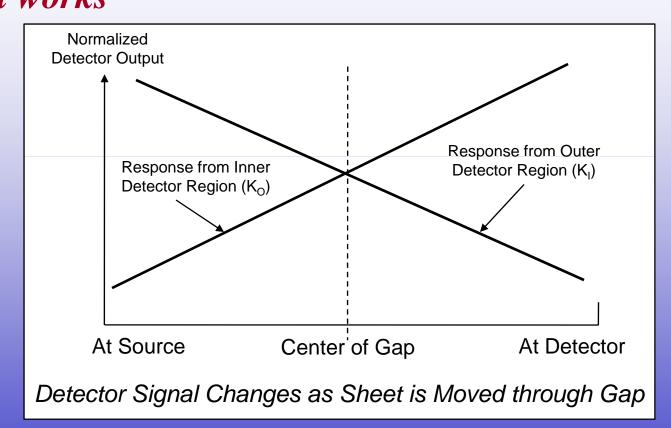
- Typical traversing beta transmission sensor
 - lonization chamber response to detector signal as sheet is moved through measurement gap from source to detector


Mahlo DFI

Mahlo Dynamic Flutter Independence How it works


- Innovative New Multi-Channel Beta Detector
- Differentiates between Beta Particles entering the center and those entering the perimeter of the Detector
- Completely Self-Corrects for Sheet Movement in the Measurement Gap
- Over two times (2.8x) the Detection Efficiency of traditional ion chamber
- Patented

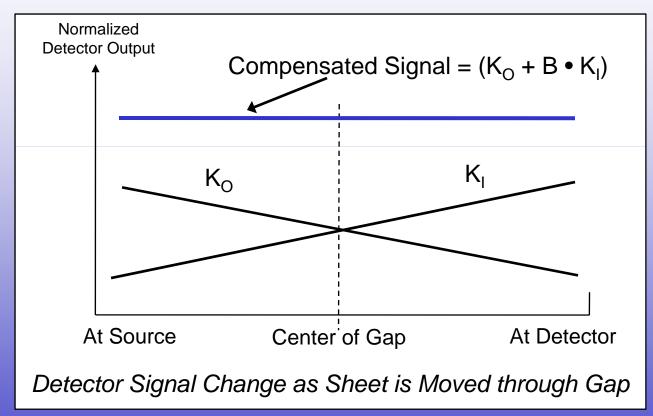
Mahlo Dynamic Flutter Independence How it works



- Mahlo Multi-Channel Detector Captures Beta Particles in Each Channel
- No Heavy Absorbers to Reduce the Signal
- Over 2x the Detection Efficiency of Older Beta Gauges

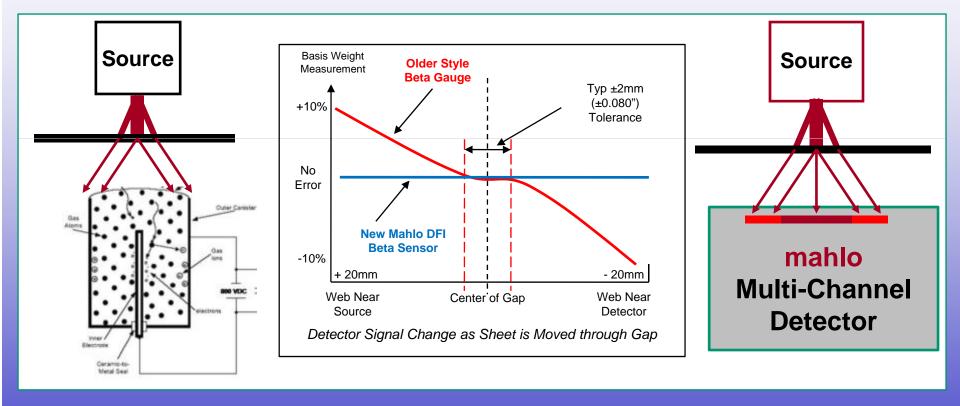
Mahlo Dynamic Flutter Independence How it works

Mahlo DFI Raw Response


- Inner Channel measures a linear increase in signal as the sheet moves from Source to Detector
- Outer Channel measures a linear decrease in signal as the sheet moves from Source to Detector

Mahlo Dynamic Flutter Independence

How it works


Mahlo DFI Measurement Signal

- Individual Signals are compared and summed
- Compensated Signal is completely unaffected by sheet flutter or position

Mahlo DFI versus Older Style Beta Gauge Actual Passline / Flutter Sensitivity

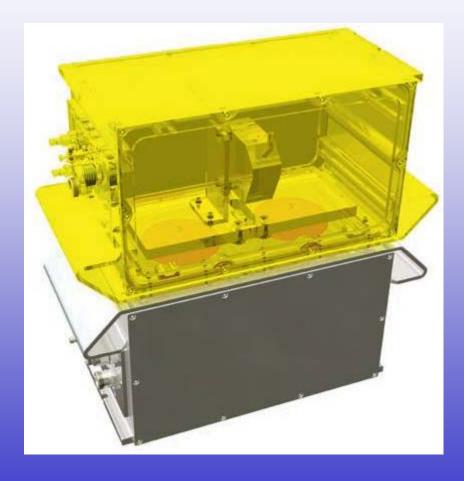
- Comparison of Passline / Flutter Sensitivity
 - Older Beta Gauge ±2mm tolerance, up to ±10% Error throughout measurement gap
 - Mahlo DFI Beta Sensor ±40mm tolerance; No Measurement Change
 Throughout Entire Measurement Gap

Mahlo DFI Beta Sensor

trendsetting technology. worldwide.

Specifications

Type of Measurement	Beta Transmission, Dual-Sided					
Isotope	Promethium-147		1000mCi	2.6yr half-life		
	Krypton-85		260mCi	10.7yr half-life		
	Strontium-90		18mCi	29yr half-life		
Measurement Range	Pm-147	0 - 9mils $(0 - 235$ gsm)				
(SG = 1)	Kr-85	0.4 - 50mils (10 – 1200gsm)				
	Sr-90	8 – 235mils (200 – 6000gsm)				
Repeatability	Pm-147	$\pm 0.05\%$ or ± 0.05 gsm (the greater)				
$(2\sigma, 1s)$	Kr-85	$\pm 0.1\%$ or ± 0.1 gsm (the greater)				
	Sr-90	$\pm 0.3\%$ or ± 0.5 gsm (the greater)				
Measuring Gap	Pm-147	0.4 - 0.8	in (10 - 20mr	n)		
	Kr-85	0.8 - 4 in (20 - 100 mm)				
	Sr-90	1.6 – 6in (40 – 100mm)				
Passline / Flutter	100% of Measurement Gap from 10 – 40mm					
Tolerance (New DFI)	Minimum of 1.75" within Larger Gaps					
Ambient Limits	140°F, 0 – 95 % relative humidity (non-condensing)					

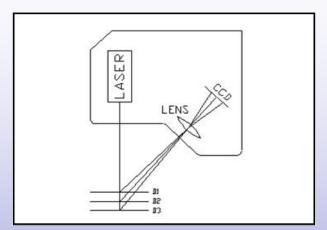


CALIPRO DML Type 2 Introduction

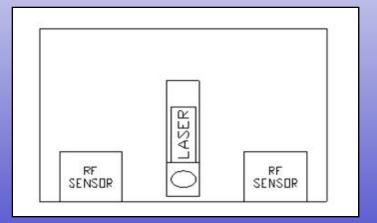
The Mahlo Calipro DML Type 2 is a Laser Caliper Sensor that measures

- **○** Using Laser Triangulation Sensor s and two high precision RF Sensors
- **○** Measures the measurement gap dynamically and continuously to better than one micron resolution
- **○** Using low CTE materials and high thermal isolation
- **○** With Peltier cooling for internal temperature control of ±1°C
- **○** With a dynamic repeatability of 5 microns

Introduction



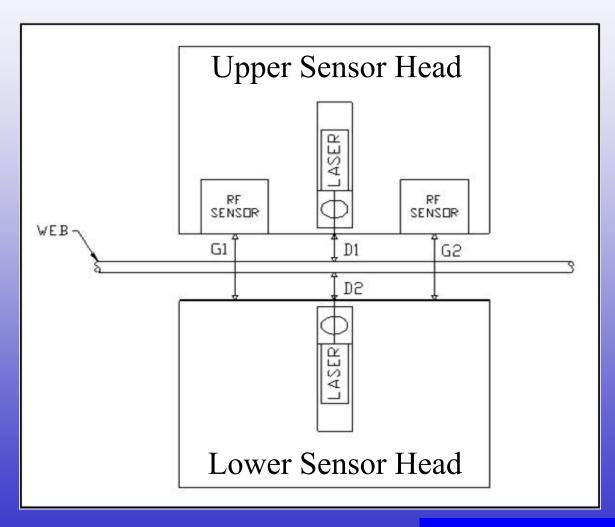
CALIPRO DML How it works


⇒ Laser Distance Sensor

Extremely high resolution Laser Distance Sensor measures to better than 1 μ (0.00004")

⇒ RF Distance Sensor

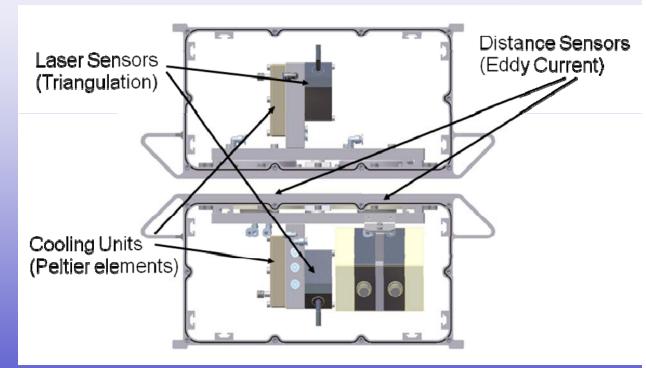
Two Radio Frequency (Eddy Current)
Sensors measure the distance to the
backing roller or lower Calipro head to the
same resolution as the Laser Sensor


CALIPRO DML Type 2

How it works

Dual-Sided
Thickness
Measurement

- The Upper Laser measures the distance to the top surface of the web
- **⇒** The Lower Laser measures the distance to the bottom surface of the web
- The RF Sensors measure the distance to the lower sensor head
- Thickness = $\{(G1 + G2) \div 2\} D1 D2$



CALIPRO DML Type 2

How it works

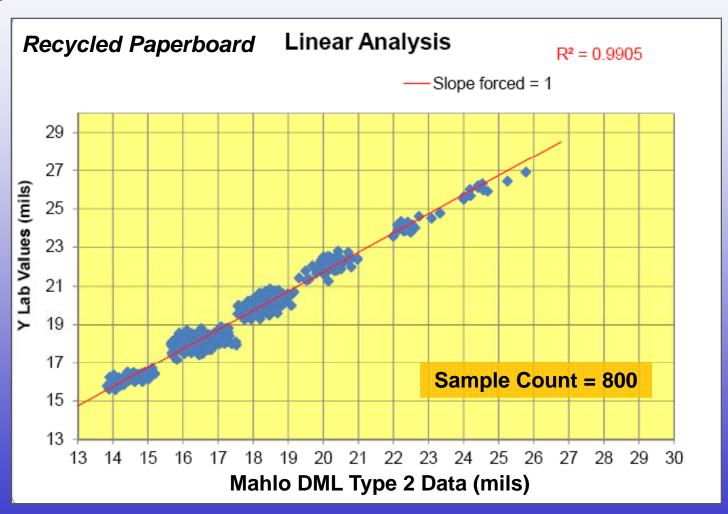
Dual-Sided
Thickness
Measurement

- Sensor Housings are Temperature Controlled to ±1°C
- Sensor Internal Volume is thermally Insulated
- Very Low Coeficient of Thermal Expansion Ceramic Sensor Mounting Plates
- Detailed Multi-Order Temperature Modeling and Compensation

CALIPRO DML

trendsetting technology. worldwide.

Specifications


	Type 1	Type 2	Туре 3		Type 4		
Configuration	Single Sided	Dual-Sided	Single-Side	ed	Dual-Sided		
	Continuous Active	Precision Stored Gap Profile					
Measurement	Laser Triangulation	Laser Triangulation	Laser Triangu		Laser Triangulation,		
Principle	plus RF Sensors,	plus RF Sensors,	against pred		sensors above and		
	against precision	sensors above and	reference ro	oller	below web		
	reference roller	below web					
Measuring				0.25 – 45 mm			
Range	0.05 – 10 mm		Dependent	on	(0.01–1.8")		
	(0.002 – 0.400 inches)		material		(Larger range		
					available on request)		
Measurement	45 (0	50 mm (2 inches)					
Gap	15 mm (0	(Larger gap available on request)					
Repeatability		Typically ±0	25.11	Typically ±25 μ			
(Dependent on	Typically ± 5 μ (±	Typically ±2 (±0.001 inch		(±0.001 inches)			
material)		(±0.001 11101)	163)	(±0.001 mones)			
Laser	650 nm						
Wavelength	050 11111						
Ambient limits	60°C (140°F), 0 – 95% relative humidity (non-condensing)						
Options	Air purging, Air or Water cooling						

trendsetting technology, worldwide.

CALIPRO DML

Typical Mill Results

Process Measurement, Control and Service

For All Your Paper Production Needs

- Process Monitoring
- Machine Control
- Production Analysis
- Quality Management
- Cost-Effective Service

Thank You!